On Triazoles XLVII [1]. Synthesis of 1,3a,5,6,ωc-Pentaazacycloalka[*e*]acenaphthylenes

Gábor Berecz and József Reiter

EGIS Pharmaceuticals Ltd., P.O. Box 100, H-1475 Budapest, Hungary Received March 28, 2003

To study the influence of planar or bulky cycloalkane rings attached to the $1,3a,5,6,\infty$ -pentaazaacenaphthylenes to the reactivity of their 4-alkylthio group toward amines - an unexpected reaction observed recently at 1,3a,5,6,10-pentaazaacephenanthrylenes (**5b**, n = 4) - different size $1,3a,5,6,\infty$ -pentaazacycloalka[*e*]acenaphthylenes (**5a**, n = 3; **5c**, n = 5; **5d**, n = 6; or **5e**, n = 10) were synthesised and their spectral data compared with that of **5b** (n = 4). Based on the analogy of the chemical shifts of carbon atoms at position 4 with that of **5b**, similar electronic structure and thus a possibility of an analogous nucleophilic attack of amines was proposed and subsequently proved by a preparative method.

J. Heterocyclic Chem., 40, 813 (2003).

In the previous paper of this series [1] we have reported on the synthesis of different 1,3a,5,6,10c-pentaazaacephenanthrylenes (5b, n = 4) observed previously as byproducts of the reaction of derivatives 4b (n = 4) with amines (Scheme 1). Unexpectedly, the 4-alkylthio derivatives **5b** (Q = alkylthio, n = 4) proved to be highly reactive against the nucleophilic attack of amines to yield derivatives **5b** (Q = dialkylamino, n = 4) (Scheme 2). This reaction was contrary to all former results obtained with 3-alkylthio-5-amino-1H-1,2,4-triazoles and their condensed-ring derivatives [1]. The reactivity of the 4-alkylthio groups of the 1,3a,5,6,10c-pentaazaacephenanthrylene derivatives **5b** (Q = alkylthio, n = 4) was explained either with the lack of the "quasi"-aromatic character of the triazole ring in **5b** (Q = alkylthio, n = 4) or a possibility of increasing contribution of the dipolar mesoionic (zwitter ionic) structures to the ground electronic state in solution, decreasing the stability of the C-4 – S bond.

The question arose whether this newly observed reaction worked only in case of 1,3a,5,6,10c-pentaazaacephenanthrylenes (**5b**, n = 4) having a six-membered cyclohexane ring attached to the 1,3a,5,6, ω c-pentaazaacenaphthylene moiety, or would also proceed with 1,3a,5,6, ω c-pentaazacycloalka[*e*]acenaphthylenes (**5a**, n = 3; **5c**, n = 5; **5d**, n = 6; or **5e**, n = 10), having different size, a more or less coplanar cyclopentane, or bulky cycloheptane, cyclooctane or cyclododecane rings.

The synthesis of the 1,3a,5,6,9c-pentaazacyclopenta[e]acenaphthylenes (**5a**, n = 3), 1,3a,5,6,11c-pentaazacyclohepta[e]acenaphthylenes (**5c**, n = 5), 1,3a,5,6,12c-pentaazacycloocta[e]acenaphthylenes (**5d**, n = 6), and 1,3a,5,6,16c-pentaazacyclododeca[e]acenaphthylenes (**5e**, n = 10), all representing novel ring systems, was performed analogously to that of 1,3a,5,6,10c-pentaazaacephenanthrylenes (**5b**, n = 4) [1] (Scheme 1).

Thus the cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidin-5(ω H)-ones (1, n = 3, 5, 6, 10, Q = alkylthio or dialkylamino) [2,3] were converted by heating with phosphorus oxychloride to the corresponding 5-chloro-derivatives **2** (n = 3, 5, 6, 10, Q = alkylthio or dialkylamino) (Method A)

(Table I, for their spectral data see Table II) [4,5] that were reacted with 2-aminoethanol to yield derivatives **3** (n = 3, 5, 6, 10, Q = alkylthio or dialkylamino) (Method B) (Table III, for their spectral data see Table IV) (Scheme 1).

Derivatives **3** (n = 3, 5, 6, 10, Q = alkylthio or dialkylamino) were either converted with thionyl chloride to derivatives **4** (n = 3, 5, 6, 10, Q = alkylthio or dialkylamino) (Method C) (Table III, for their spectral data see Table IV) that could be ring closed by heating neat or boiling in acetonitrile (Method D), or ring closed directly by heating in polyphosphoric acid (Method E) (Table V, for their spectral data see Table VI) (Scheme 1) to the desired derivatives **5a** (n = 3), **5c** (n = 5), **5d** (n = 6) and **5e** (n = 10), respectively.

G. Berecz and J. Reiter

Comp ound	n	Q		Reactio	n	Yield (%)	Mp (°C) (Cryst. from)	Molecular Formula		Ca	Analysis ilcd/Fou	s ind		MS EI	Lit. mp (°C)
			Met	Time	Tempe			(MW)	С	Н	Ν	S	Cl		
			hod	(hours)	rature										
					(°C)										
2/1	3	Methylthio	A1	1	90	91	132-133	C₀H₀ClN₄S	44.91	3.77	23.28	13.32	14.73		126-128
		-					(ether)	240.72	45.02	3.92	23.24	13.28	14.85	240	[5]
2/2	3	1-Methylethylthio	A1	1	90	88	91-93	$C_{11}H_{13}CIN_4S$	49.16	4.88	20.85	11.93	13.19		
							(ⁱ Pr ₂ O)	268.77	49.07	4.92	20.88	11.88	13.08		
2/3	3	Dimethylamino	Al	1	85	85	134-138	$C_{10}H_{12}CIN_5$	50.53	5.09	29.46		14.92		
							(ether)	237.69	50.48	5.21	29.55		15.02		
2/4	3	Morpholin-4-yl	Al	1	80	85	216-219	$C_{12}H_{14}CIN_5O$	51.53	5.04	25.04		12.67		213-215
							(ether)	279.72	51.50	5.11	24.98		12.60	279	[5]
2/5	5	Methylthio	A1	2	90	96	120-121	$C_{11}H_{13}CIN_4S$	49.16	4.88	20.85	11.93	13.19		119-120.5
							(EtOAc)	268.77	49.22	4.96	20.78	12.04	13.25		[5]
2/6	6	Methylthio	A2	4	85	85	90.5-92	$C_{12}H_{15}CIN_4S$	50.97	5.35	19.81	11.34	12.54		90.5-92
							(cyclohexane)	282.80	50.88	5.50	19.86	11.28	12.48		[5]
2/7	10	Methylthio	A2	6	85	91	128-129	$C_{16}H_{23}CIN_4S$	56.71	6.84	16.53	9.46	10.46		128-129
							(EtOAc)	338.91	56.64	6.92	16.61	9.51	10.55		[5]

 Table I

 Synthetical and Analytical Data of 5-Chloro-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidines

 Table II

 Nmr Data of 5-Chloro-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidines

	CH ₂ -6	CH ₂ -	Other	Q	C-2	C-5	C-5a	С-	С-	ωa	Other CH ₂	Q
		(ω-1)	CH_2					(ω-1)	(ω-1)a			
2/1	3.09 t	3.17 t	2.27 m	2.72 s (3H)	168.4	132.9	123.1	35.2	173.0	156.8	22.9 (C-7)	13.9
		(CH ₂ -8)	(CH ₂ -7)					(C-8)	(C-8a)	(C-9a)	28.1 (C-6)	
2/2	3.08 t	3.15 t	2.30 m	4.04 m (1H)	167.6	132.9	123.3	35.1	173.1	156.5	22.9 (C-7)	36.9 (CH)
		(CH ₂ -8)	(CH ₂ -7)	1.47 d (6H)				(C-8)	(C-8a)	(C-9a)	28.0 (C-6)	23.3 (CH ₃)
2/3	3.01 t	3.08 t	2.24 m	3.16 s (6H)	167.8	131.9	120.6	35.0	170.1	156.4	22.7 (C-7)	37.5
		(CH ₂ -8)	(CH ₂ -7)					(C-8)	(C-8a)	(C-9a)	28.1 (C-6)	
2/4	3.03 t	3.11 t	2.26 m	3.65 m (NCH ₂)	167.3	132.5	121.4	35.2	171.0	156.3	22.9 (C-7)	45.7 (NCH ₂)
	(8 Hz)	(8 Hz)	(8 Hz)	3.81 m (OCH ₂)				(C-8)	(C-8a)	(C-9a)	28.2 (C-6)	66.4 (OCH ₂)
2/5	3.04 m	3.16 m	1.9 m (2H)	2.72 s (3H)	168.3	134.5	122.8	39.6	169.6	154.0	25.9, 27.1, 28.4,	13.7
		(CH ₂ -10)	1.8 m (4H)					(C-10)	(C-10a)	(C-11a)	31.1 (C-8 !)	
2/6	3.03 t	3.10 t	1.84 m (4H)	2.73 s (3H)	168.6	135.1	121.2	36.0	168.5	154.5	25.6, 25.8, 26.8,	13.8
		(CH ₂ -11)	1.42 m (4H)					(C-11)	(C-11a)	(C-12a)	28.8, 30.4	
2/7	2.91 m	2.91 m	2.0 m (2H)	2.72 s (3H)	168.9	136.4	121.5	33.1	168.0	154.2	22.3, 23.1, 24.9,	13.8
		(CH ₂ -15)	1.8 m (2H)					(C-15)	(C-15a)	(C-16a)	25.8, 26.1, 26.2,	
			1.5 m (12H)								26.7 (2 peaks), 26.8	
			1.0 m (1211)								2017 (2 peano), 2010	

The spectral data of derivatives **1a-5a**, **1c-5c**, **1d-5d** and **1e-5e** were fully analogous to those of the corresponding [1,2,4]triazolo[5,1-b]quinazoline (**1b-4b**) and 1,3a,5,6, 10c-pentaazaacephenanthrylene (**5b**) derivatives, respectively, the structure of which was proved previously [1], giving evidence for their constitution.

pmr (deuteriochloroform)

Interestingly the carbon atom 9 of the 1,3a,5,6,11c-pentaaza-7,8,9,10-tetrahydro-11*H*-cyclohepta[*e*]acenaphthylenes **5/6** (n = 5, Q = methylthio) and **5/7** (n = 5, Q = morpholin-4-yl) and that of the corresponding carbon atom 8 of derivatives **2/5** and **3/5** (Q = methylthio, X = chloro or 2-hydroxyethylamino, respectively) (Scheme 3) was also shifted upfield to 32.4 and 32.5 ppm, and 31.1 and 31.3 ppm, respectively, analogously to that of the corresponding carbon atom 8 of the 6,7,8,9,10,11-hexahydrocyclohepta-[d][1,2,4]triazolo[1,5-*a*]pyrimidin-5-one derivatives **1/5** (Q = methylthio, R³ = H) and **6/5** (Q = methylthio, R³ = benzyl), appearing at 32.4 and 31.3 ppm, respectively, attributed previously [3] to the shielding effect of the C=O group.

cmr (deuteriochloroform)

Comp	n	Q	Reaction	Yield	Mp (°C)	Molecular	MS			Analysis		
ound			(hours)	(%)	(Cryst. from)	(MW)	EI	С	Н	N	S	Cl
3/1	3	Methylthio	0.5	97	191-192 (MeOH)	$C_{11}H_{15}N_5OS$		49.79 49.71	5.70 5.81	26.39	12.08	
3/2	3	1-Methylethylthio	1	98	195-196 (CH-CN / EtOH)	$C_{13}H_{19}N_5OS$ 293 39		53.22 53.30	6.53 6.71	23.87 23.78	10.93	
3/3	3	Dimethylamino	8	98	216-217 (EtOH)	$C_{12}H_{18}N_6O$ 262.32		54.95 54.87	6.92 7.01	32.04 32.12	10.97	
3/4	3	Morpholin-4-yl	1	81	225-227 (CH ₂ CN / EtOH)	$C_{14}H_{20}N_6O_2$ 304.35		55.25 55.30	6.62 6.73	27.61 27.69		
3/5	5	Methylthio	4	93	216-217 (CH ₃ CN / EtOH)	C ₁₃ H ₁₉ N ₅ OS 293.39	293	53.22 53.17	6.53 6.64	23.87 23.84	10.93 10.88	
3/6	6	Methylthio	6	95	208-209 (EtOH)	$C_{14}H_{21}N_5OS$ 307.42	307	54.70 54.77	6.89 6.98	22.78 22.71	10.43 10.38	
3/7	10	Methylthio	2	93	202-203.5 (2-PrOH)	C ₁₈ H ₂₉ N ₅ OS 363.53		59.47 59.55	8.04 8.11	19.26 19.13	8.82 8.75	
4/1	3	Methylthio	18	92	174-177 (dec) (ether)	C ₁₁ H ₁₄ ClN ₅ S 283.78		46.56 46.61	4.97 5.11	24.68 24.66	11.30 11.22	12.49 12.55
4/2	3	1-Methylethylthio	20	86	145-147 (dec) (ether)	C ₁₃ H ₁₈ ClN ₅ S 311.84		50.07 50.13	5.82 5.96	22.46 22.39	10.28 10.22	11.37 11.42
4/4	3	Morpholin-4-yl	19	84	175-180 (dec) (ether)	C ₁₄ H ₁₉ ClN ₆ O 322.80		52.09 52.01	5.93 6.06	26.03 25.98		10.98 11.02

Table III

Synthetical and Analytical Data of 5-[(2-Hydroxyethyl)amino and 2-Chloroethyl)amino]-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidines

Scheme 2

 $(Z = O \text{ and } CH_2)$

1/5: R³ = H 6/5: R³ = benzyl

As expected (Table VI) the ring size of the cycloalka moiety of derivatives **5a** and **5c-5e** (Q = methylthio) strongly influenced the chemical shift of carbon atoms 6a and ωa . On the other hand, it did not influence the chemical shift of carbon atoms 4 appearing at 161.5, 161.3, 161.4 and 160.8 ppm, respectively, (Table VI), in full analogy with that of derivative **5b** (Q = methylthio) reported to

appear at 161.8 ppm previously [1]. This fact predicts analogous chemical surrounding, thus similar electronic structure of carbon atom 4, and consequently the possibility of nucleophilic attack of amines.

Based on the above prediction derivatives **5a** (Q = methylthio) and **5c-5e** (Q = methylthio) were reacted at 100 °C with morpholine and piperidine (Method F, Scheme 2) to yield within a short time (1-2 hours) and in good yield (69–78 %) the expected 4-dialkylamino derivatives **5a** and **5c-5e** (Q = morpholin-4-yl and piperidin-1-yl) (Table V).

As a conclusion it can be stated that different size cycloalkanes, either planar or bulky, attached to the 1,3a,5,6, ω c-pentaazaacenaphthylene do not influence considerably its electronic state. Consequently the 4-alkylthio group of derivatives **5a-5e** (Q = alkylthio) is in all cases activated towards the nucleophilic attack of amines.

EXPERIMENTAL

Melting points were determined on a Kofler-Boëtius micro apparatus and are uncorrected. The infrared spectra were obtained as potassium bromide pellets using Perkin-Elmer 882 spectrophotometer. The ultraviolet spectra were obtained using a Varian Cary 1E UV-VIS instrument. The pmr and the cmr measurements were performed on Bruker WM-250 and Varian Unity Inova 400 (400 MHz) instruments. To confirm the assignments in some cases standard Varian HSQC and HMBC 2D-nmr programs were used. The ms spectra were recorded on a Kratos MS25RFA and a VG Trio 1000 instrument using direct inlet probe in EI mode. Dry-column flash chromatography was performed according to [7] on Kieselgel 60 H (Merck 107736) and Aluminium oxide 60 G (Merck 101090).

	Ø	13.1	36.5 (CH) 23.5 (CH _a)	37.4	45.9 (NCH ₂) 65.8 (OCH ₂)	13.6	13.2	13.3	13.4	13.4	36.9 (CH) 23.5 (CH ₃)	45.9 (NCH ₂) 66.4 (OCH ₂)
	Юа	155.7 (C-9a)	155.8 (C-9a)	155.4 (C-9a)	155.4 (C-9a)	153.9 (C-11a)	154.9 (C-12a)	155.0 (C-16a)	155.9 (C-9a)	155.7 (C-9a)	(C-9a)	155.5 (C-9a)
	C-(0-1)a	171.5 (C-8a)	171.9 (C-8a)	169.6 (C-8a)	170.2 (C-8a)	169.0 (C-10a)	165.85 (C-11a)	165.2 (C-15a)	172.0 (C-8a)	173.0 (C-8a)	(C-8a)	171.5 (C-8a)
	C-(@-1)	33.9 (C-8)	34.3 (C-8)	34.1 (C-8)	34.2 (C-8)	38.5 (C-10)	35.2 (C-11)	32.2 (C-15)	34.2 (C-8)	34.1 (C-8)	34.3 (C-8)	34.4 (C-8)
	Other CH ₂	22.3 (C-7)	22.8 (C-7)	(C-1)	22.8 (C-7)	.8, 27.4 C-8 !)	.4, 25.9, 30.1 -10)	.4, 23.1, .7, 25.9, .6, 26.8	22.7 (C-7)	22.9 (C-7)	(C-1)	(C-7)
	C-6	28.0	28.5	28.5	28.5	25.7, 25 31.3 ((23.5, 25. 28.7, (C- 6	22.0, 22 24.9, 25 26.2, 26 (C- 6	28.3	28.4	28.5	28.6
cmr	C-5a	100.5	100.8	99.5	100.0	106.0	102.9	103.8	100.6	101.1	101.2	100.0
	C-5	143.4	143.9	143.0	143.5	145.7	145.4	146.5	143.2	143.0	142.9	142.4
	C-2	164.3	163.5	166.5	166.1	166.1	165.9	166.0	164.9	166.0	165.3	166.5
	NCH ₂ OCH ₂ (CICH ₂)	44.8 60.4	44.9 60.8	44.7	44.8 60.8	47.8 61.3	46.7 61.4	46.7 61.4	43.5* 44.0*	43.3* 44.2*	43.5* 44.5*	43.6* 44.3*
	ð	2.65 s (3H)	3.97 m (1H) 1.44 d (6H)	3.04 s (6H)	3.44 m (4H, NCH ₂) 3.70 m (4H, OCH ₂)	(3H)	2.64 s (3H)	2.60 s (3H)	2.65 s (3H)	2.66 s (3H)	4.0 m (1H) 1.46 d (6H)	3.58 m (4H, NCH ₂) 3.77 m (4H, OCH ₃)
	CH2-(@-1)	3.13 t (CH ₂ -8)	3.18 t (CH ₂ -8)	3.10 t (CH ₂ -8)	3.08 t (CH ₂ -8)	2.98 m (CH ₂ -10)	2.91 m (CH ₂ -11)	2.7 m (CH ₂ -15)	3.12 t (CH ₂ -8)	3.14 t (CH ₂ -8)	(CH ₂ -8)	$(CH_2 - 8)$
	other CH ₂	$\begin{array}{c} 2.09 \text{ qui} \\ (\text{CH}_2 \text{-} 7) \end{array}$	2.17 qui (CH ₂ -7)	2.08 qui (CH ₂ -7)	2.03 qui (CH ₂ -7)	1.85 m (2H) 1.70 m (4H) (CH ₂ -7-9)	1.70 qui 1.70 qui 1.49 qui 1.38 qui (CH.7.10)	(CH2 7-10) 1.82 m (2H) 1.63 m (2H) 1.3-1.56 m (12 H) (CH2 7-14)	$(CH_2 - 7)$	2.22 qui (CH ₂ -7)	2.21 qui (CH ₂ -7)	$\frac{2.16}{(CH_2-7)}$
pmr	CH_2-6	2.84 t	2.91 t	2.79 t	2.76 t	2.84 m	2.87 m	2.7 m	2.89 t	2.97 t	2.99 t	2.92 t
	НО	4.98 t	4.86 t	4.98 bs	4.96 t	4.8 bs	4.7 bs	4.7 bs				
	NCH ₂ OCH ₂ (CICH ₂)	3.64 m (4H)	3.76 m (4H)	3.67 m (4H)	3.60 m (4H)	3.88 q (5.4Hz) 3.76 t	4.08 q (5.3 Hz) 3.78 t	4.07 q (6 Hz) 3.66 t	3.96 q (6.4 Hz) 3.79 t	4.00 m 3.77 t	4.00 m 3.74 t	3.96 q 3.75 t
	HN	7.54 t	6.95 t	6.76 t	7.05 t	6.61 t	6.53 t	6.93 t	7.71t		6.42 t	6.32 t
	Sol vent pmr cmr	q	$^{a+b}_{b}$	a^+b	p,	$_{a+c}^{b}$	a+b a+c	a+b a+c	a+b	$^{a+c}$	a a	e,
	Comp ound	3/1	3/2	3/3	3/4	3/5	3/6	3/7	4/1	4/1	4/2	4/4

Table IV

Nmr Data of 5-[(2-Hydroxyethyl)amino and 2-Chloroethyl)amino]-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidines

816

 $\label{eq:constraint} \begin{tabular}{ll} \end{tabular} all the transform \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} begin{tabular}{ll} \end{tabular} all the transform \end{tabular} \end{tabu$

Synthetical and Analytical DatMethodStartingReactionMethodStartingTimeE1 $3/1$ 14 E1 $3/1$ 14 E1 $3/3$ 27 E1 $3/3$ 22 E1 $3/4$ 9 E1 $3/5$ 8.5 E1 $3/5$ 8.5 E1 $3/6$ 3 E2 $3/7$ 4.5 E2 $3/7$ 4.5	Synthetical and Analytical Data of 1,3a Method Starting Reaction Yield Material Time Temperature (%) Hours) 27 140 91 [a] 3/1 14 140 80 [a] 3/2 56 reflux 67 [b] 4/2 66 reflux 67 [b] 3/3 22 130 90 [b] 4/4 110 reflux 67 [b] 4/4 100 71 72 [b] 4/4 100 71 72 [b] 4/4 100 71 72 [b] 1 100 71 72 [b] 3/5 8.5 140 75 [a] 3/6 1.5 100 71 [b] 1.5 100 70 75 [b] 3/6 3 140 75 [b] 3/6 3 140 76 [b] 5/8 <td< th=""><th>Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazz Method Starting Reaction Yield Mp (°C) Material Time Temperature (%) (Cryst. from) Imaterial Time Temperature (%) (Cryst. from) Imaterial 114 140 80 197-202 (dec) Iaj 27 140 91 (CH₃CN) E2 3/2 21 140 91 (CH₃CN) E1 3/3 22 130 90 196-199 E1 3/4 0.25 130 90 196-199 E2 3/4 0.25 180 54 234-239 (dec) E2 3/4 0.25 180 77 (ether) E1 3/5 8.5 140 75 216-219 (dec) E1 3/6</th><th>Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]; Method Starting Reaction Yield Mp (°C) Molecular Method Starting Reaction Yield Mp (°C) Molecular Material Time Temperature (%) (Cryst. from) formula Method Starting Reaction Yield Mp (°C) Molecular Method Starting Reaction (°C) Molecular (MW) F 3/1 14 0 0 177 (CH3CN) 241/30 F 5/1 1 1 100 71 175-177 Ci₁H₁₃N₆ F 5/1 1 1 100 71 2175-218 244.30</th><th>Synthetical and Analytical Data of 1,3a,5,6,0c-Pentaazacycloalka[e]acenaphth Method Sarting Reaction Yield Mp (°C) Molecular Material Time Temperature (%) (Cryst. from) Formula C Imaterial Time Temperature (%) (Cryst. from) Molecular Material Time Temperature (%) (Cryst. from) Formula Imaterial Time Temperature (%) (Cryst. from) Formula P 27 1440 91 197-202 (dec) 247.32 53.42 E1 3/3 22 130 90 196-199 274.40% 53.670 E1 3/3 22 130 90 196-199 244.30% 56.60 D1 4/4 110 refluer 77 clether) 284.37 63.36 D2 4/4 0.25 180 54 58.50 56.60 E1 3/5 8.5 173-177</th><th>Synthetical and Analytical Data of 1,3a,5,6,00-Pentaazacycolalka[e]acempthlylenes Method Starting Reaction Yield Mp (°C) Molecular Analytical Lata of 1,3a,5,6,00-Pentaazacycloalka[e]acempthlylenes Material Time Temperature (%) (Cryst. from) Molecular Analytical Calcular Material Time Temperature (%) (Cryst. from) Formula C H Bit 27 140 80 197-202 (dec) C₁H₃N/s 53.33 5.44 Bit 3/3 2 130 77 (H3,N) 27.33 53.42 53.06 6.62 6.66 6.63 6.63 6.63 6.63 6.63 6.63 6.63 6.63 6.70 6.22 7.09 6.34 7.09 6.34 6.34 6.34 6.36 6.36 6.36 6.36 6.36 6.34 7.09 6.33 7.09 6.34 7.09 7.09 7.01 7.09 7.01 7.01 7.01 7.01 7.01 7.01</th><th>Synthetical and Analytical Data of 1,34,5,6,00-Pentaazacycloalka[e]acemphthylenes Method Starting Reaction Yield Molecular Analysis Material Time Temperature (%) (Cryst. from) Formula CaldFound Haterial Time Temperature (%) (Cryst. from) Formula CaldFound Haterial Time Temperature (%) (Cryst. from) Formula CaldFound 13 27 140 91 107-202 (dec) 247.32 5.34 2.83 3.440 13 27 140 91 153-157 214.30 5.90 6.05 3.423 12 21 10 77 16bc10 275.38 5.640 6.22 25.43 12 21 10 77 153-157 214.30° 58.70 6.22 25.43 12 21 21 21 21 22 23 22 24.43 28.57 22 24.43</th><th></th><th>Synthetical and Analytical Data of 1,3a,5,6,00- Pentazzeycloalke[e]accamphthylenes Method Samthetical and Analytical Data of 1,3a,5,6,00- Pentazzeycloalke[e]accamphthylenes Material Relation Wight Material Relation Wight Material Calcd Found MS MS Imace Temperature (%) (%) (Cryst. from) Pomula Calcd Found S Material Material Material Material (%) (Cryst. from) Fomula Calcd Found S Material Material Material Material Material Material Material Material (%) (Cryst. from) Pomula Calcd Found S Material Material</th></td<>	Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazz Method Starting Reaction Yield Mp (°C) Material Time Temperature (%) (Cryst. from) Imaterial Time Temperature (%) (Cryst. from) Imaterial 114 140 80 197-202 (dec) Iaj 27 140 91 (CH ₃ CN) E2 3/2 21 140 91 (CH ₃ CN) E1 3/3 22 130 90 196-199 E1 3/4 0.25 130 90 196-199 E2 3/4 0.25 180 54 234-239 (dec) E2 3/4 0.25 180 77 (ether) E1 3/5 8.5 140 75 216-219 (dec) E1 3/6	Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]; Method Starting Reaction Yield Mp (°C) Molecular Method Starting Reaction Yield Mp (°C) Molecular Material Time Temperature (%) (Cryst. from) formula Method Starting Reaction Yield Mp (°C) Molecular Method Starting Reaction (°C) Molecular (MW) F 3/1 14 0 0 177 (CH3CN) 241/30 F 5/1 1 1 100 71 175-177 Ci ₁ H ₁₃ N ₆ F 5/1 1 1 100 71 2175-218 244.30	Synthetical and Analytical Data of 1,3a,5,6,0c-Pentaazacycloalka[e]acenaphth Method Sarting Reaction Yield Mp (°C) Molecular Material Time Temperature (%) (Cryst. from) Formula C Imaterial Time Temperature (%) (Cryst. from) Molecular Material Time Temperature (%) (Cryst. from) Formula Imaterial Time Temperature (%) (Cryst. from) Formula P 27 1440 91 197-202 (dec) 247.32 53.42 E1 3/3 22 130 90 196-199 274.40% 53.670 E1 3/3 22 130 90 196-199 244.30% 56.60 D1 4/4 110 refluer 77 clether) 284.37 63.36 D2 4/4 0.25 180 54 58.50 56.60 E1 3/5 8.5 173-177	Synthetical and Analytical Data of 1,3a,5,6,00-Pentaazacycolalka[e]acempthlylenes Method Starting Reaction Yield Mp (°C) Molecular Analytical Lata of 1,3a,5,6,00-Pentaazacycloalka[e]acempthlylenes Material Time Temperature (%) (Cryst. from) Molecular Analytical Calcular Material Time Temperature (%) (Cryst. from) Formula C H Bit 27 140 80 197-202 (dec) C ₁ H ₃ N/s 53.33 5.44 Bit 3/3 2 130 77 (H3,N) 27.33 53.42 53.06 6.62 6.66 6.63 6.63 6.63 6.63 6.63 6.63 6.63 6.63 6.70 6.22 7.09 6.34 7.09 6.34 6.34 6.34 6.36 6.36 6.36 6.36 6.36 6.34 7.09 6.33 7.09 6.34 7.09 7.09 7.01 7.09 7.01 7.01 7.01 7.01 7.01 7.01	Synthetical and Analytical Data of 1,34,5,6,00-Pentaazacycloalka[e]acemphthylenes Method Starting Reaction Yield Molecular Analysis Material Time Temperature (%) (Cryst. from) Formula CaldFound Haterial Time Temperature (%) (Cryst. from) Formula CaldFound Haterial Time Temperature (%) (Cryst. from) Formula CaldFound 13 27 140 91 107-202 (dec) 247.32 5.34 2.83 3.440 13 27 140 91 153-157 214.30 5.90 6.05 3.423 12 21 10 77 16bc10 275.38 5.640 6.22 25.43 12 21 10 77 153-157 214.30° 58.70 6.22 25.43 12 21 21 21 21 22 23 22 24.43 28.57 22 24.43		Synthetical and Analytical Data of 1,3a,5,6,00- Pentazzeycloalke[e]accamphthylenes Method Samthetical and Analytical Data of 1,3a,5,6,00- Pentazzeycloalke[e]accamphthylenes Material Relation Wight Material Relation Wight Material Calcd Found MS MS Imace Temperature (%) (%) (Cryst. from) Pomula Calcd Found S Material Material Material Material (%) (Cryst. from) Fomula Calcd Found S Material Material Material Material Material Material Material Material (%) (Cryst. from) Pomula Calcd Found S Material Material
Synthetical and Analytical Dat Starting Reaction Material Time Time Temperature $3/1$ 14 140 $3/2$ 27 140 $3/2$ 27 140 $3/3$ 22 130 $3/3$ 22 130 $3/4$ 0.25 130 $3/4$ 9 130 $3/4$ 0.25 180 $3/4$ 0.25 180 $3/4$ 0.25 180 $3/4$ 9 130 $3/4$ 9 130 $3/4$ 9 130 $3/5$ 8.5 140 $3/6$ 3 100 $3/6$ 3 100 $3/6$ 3 100 $3/7$ 4.5 120	Synthetical and Analytical Data of 1,3a Starting Reaction Yield Material Time Temperature (%) 3/1 14 140 80 3/2 26 reflux 67 3/3 22 130 90 3/3 22 130 77 3/3 22 130 77 3/3 22 130 77 3/3 22 130 77 3/4 0.25 180 77 3/4 9 130 89 3/1 1 100 71 3/4 9 130 89 3/4 9 130 77 3/5 8.5 140 75 3/6 1.5 100 70 3/6 3 140 72 3/6 3 140 72 3/7 45 100 69 3/7 45 100 69	Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazz Starting Reaction Yield Mp (°C) Material Time Time Mp (°C) Material Time Time Mp (°C) Material Time Time Time Mp (°C) Material Time Time Time Mp (°C) Material Time Time Time Mp (°C) At 14 140 80 197-202 (dec) 3/3 22 130 90 107-107 3/3 22 130 90 107-199 3/3 22 130 90 106-199 3/4 0 77 (CH ₃ CN) (CH ₃ CN) 3/4 0 71 175-177 (ether) 3/4 0 73 230-236 (dec) (ether) 3/4 9 1300 89 216-219 (dec) 3/4 9 130 77 216-219 (dec) 3/5 8.5 140 75 216-219 (dec)	Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e] Starting Reaction Yield Mp (°C) Molecular Material Time Temperature (%) (Cryst. from) Formula Mouse (°C) No MW MW Material T 140 80 197-202 (dec) C ₁₁ H ₁₃ N ₅ S 372 22 130 77 (CH ₃ CN) 247.32 373 22 130 90 196-199 C ₁₃ H ₁₇ N ₅ S 373 22 130 77 (CH ₃ CN) 244.30 41 1 100 71 175-177 C ₁₃ H ₁₆ N ₆ O 314 92 100 71 175-177 C ₁₃ H ₁₆ N ₆ O 314 9 54 234-239 (dec) C ₁₄ H ₁₆ N ₆ O	Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]acenaphth Sharting Reaction Yield Mp (°C) Molecular Material Time Temperature (%6) (Cryst. from) Formula C Material Time Temperature (%6) (Cryst. from) Molecular C Material Time Temperature (%6) (Cryst. from) Molecular C 3/1 14 140 80 197-202 (dec) C ₁₁ H ₁₃ N ₅ S 53.42 3/2 66 reflux 67 153-157 C ₁₃ H ₁₇ N ₅ S 53.42 3/2 2 130 90 196-199 C ₁₃ H ₁₅ N ₅ S 56.70 3/2 2 130 90 155-115 C ₁₃ H ₁₅ N ₅ S 56.70 3/1 1 100 71 ether) 275.38 56.60 3/1 9 155-115 C ₁₃ H ₁₅ N ₆ S 58.73 58.73 4/4 0.25 180 275.236 (dec) C ₁	Synthetical and Analytical Data of 1,3a,5,6.0c-Pentaazacycloalka[e]acenaphthylenes Starting Reaction Yield Mp (°C) Molecular Analytical Late Material Time Temperature (%) (Cryst. from) Formula Caled Material Time Temperature (%) (Cryst. from) Formula Caled Material Time Temperature (%) (Cryst. from) Formula Caled 3/1 14 140 80 197-202 (dec) C ₁₁ H ₁₃ N/s 53.42 5.30 3/2 2 130 77 (CH ₃ CN) 24A.30 58.91 6.36 3/1 1 100 71 (CH ₃ CN) 24A.30 58.32 7.21 3/2 2 130 71 (CH ₃ CN) 24A.30 6.33 7.31 4/4 110 reflux 67 155.157 C ₁₃ H ₁₃ N/s 58.79 6.44 4/4 1 1 105.193 274.23 (dec) 284.37 <td>Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]acenaphthylenes Slatting Raction Yield Mp (°C) Molecular Material Time Time Time Time CaseAfenud Analysis Material Time Time (°G) (Cryst. from) P(MU) C H N Material Time Time (°G) (Cryst. from) P(MU) C H N Molecular (°G) (Cryst. from) P(MU) C H N Material Time Time Time S3.2 S3.3 S3.44 S3.23 Molecular C 153-157 C₁₃H₁₀N₅₈ S6.70 6.22 S5.44 S3.23 Molecular C 153-157 C₁₃H₁₀N₅₈ S6.70 6.33 23.23 S3.23 Molecular C 134-170 Z₁₄H₁₀N₅₈ S6.70 6.33 23.42 S3.44 S3.53 Molecular</td> <td>Synthetical and Analytical Data of L3A,56,00c-Pentaazacycloalka[e]acenaphthylenes Starting Reaction Yield Mp (°C) Molecular Analysis Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) Cryst. from) Formula CalcdFound S Material Time Temperature (%) Cryst. from) 241,3,5 S</td> <td>Synthetical and Analytical Data of 1,3a,5,60c-Pentazazoyoloalka[e]acemphlhylenes Starting Material Time Reaction Time Yield (%) Mp (°C) (°G) Molecular (MM) Analysis Caled/Found Ms 1 14 140 80 (°G) Cayst. from) Pormula Analysis Ms 31 14 140 80 (°G) Cayst. from) Pormula 2.7 12.92 247 32 6 reflux 67 153-157 C₁H₁₃Ns 53.42 5.33 11.64 275 32 2 130 70 90 6.60 34.40 27 33 2 11 100 71 175-177 C₁₄H₃Ns 56.80 6.60 34.40 274 34 9 11 100 71 175-177 C₁₄H₃Ns 56.30 6.34 29.43 244 34 0.25 18 6.33 6.34 29.35 284 37.09 276 284 34</td>	Synthetical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]acenaphthylenes Slatting Raction Yield Mp (°C) Molecular Material Time Time Time Time CaseAfenud Analysis Material Time Time (°G) (Cryst. from) P(MU) C H N Material Time Time (°G) (Cryst. from) P(MU) C H N Molecular (°G) (Cryst. from) P(MU) C H N Material Time Time Time S3.2 S3.3 S3.44 S3.23 Molecular C 153-157 C ₁₃ H ₁₀ N ₅₈ S6.70 6.22 S5.44 S3.23 Molecular C 153-157 C ₁₃ H ₁₀ N ₅₈ S6.70 6.33 23.23 S3.23 Molecular C 134-170 Z ₁₄ H ₁₀ N ₅₈ S6.70 6.33 23.42 S3.44 S3.53 Molecular	Synthetical and Analytical Data of L3A,56,00c-Pentaazacycloalka[e]acenaphthylenes Starting Reaction Yield Mp (°C) Molecular Analysis Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) (Cryst. from) Formula CalcdFound S Material Time Temperature (%) Cryst. from) Formula CalcdFound S Material Time Temperature (%) Cryst. from) 241,3,5 S	Synthetical and Analytical Data of 1,3a,5,60c-Pentazazoyoloalka[e]acemphlhylenes Starting Material Time Reaction Time Yield (%) Mp (°C) (°G) Molecular (MM) Analysis Caled/Found Ms 1 14 140 80 (°G) Cayst. from) Pormula Analysis Ms 31 14 140 80 (°G) Cayst. from) Pormula 2.7 12.92 247 32 6 reflux 67 153-157 C ₁ H ₁₃ Ns 53.42 5.33 11.64 275 32 2 130 70 90 6.60 34.40 27 33 2 11 100 71 175-177 C ₁₄ H ₃ Ns 56.80 6.60 34.40 274 34 9 11 100 71 175-177 C ₁₄ H ₃ Ns 56.30 6.34 29.43 244 34 0.25 18 6.33 6.34 29.35 284 37.09 276 284 34
iical and Analytical Dat Reaction Time Temperature (hours) (°C) 27 140 27 140 26 reflux 22 130 22 130 22 130 1 100 1 100 8.5 140 8.5 140 8.5 140 1.5 100 1.5 100 22 130 22 130 22 130 22 130 22 2 2 30 23 2 2 30 24 2 30 25 2 30 26 2 30 27 2 30 20 20 2 30 20 20 20 2	iceal and Analytical Data of 1,3a Reaction Yield (hours) (°C) 27 140 80 27 140 91 (%) 26 reflux 67 2 130 90 27 130 90 21 100 71 110 reflux 72 0.25 180 54 9 130 89 1 100 71 1.5 100 70 1.5 100 70 1.5 100 69 2 130 54 9 130 87 1.1 100 71 1.1 100 71 1.1 100 71 1.2 100 70 1.5 100 69 2 130 73 3 140 72 3 140 72 1.5 100 70 1.5	ical and Analytical Data of 1,3a,5,6,0c-Pentaazz Reaction Yield Mp ($^{\circ}$ C) (hours) ($^{\circ}$ C) (Cryst. from) Time Temperature (hours) ($^{\circ}$ C) ($^{\circ}$ G) (Cryst. from) 27 140 80 197-202 (dec) 28 130 90 196-199 (CH ₃ CN) 10 reflux 67 153-157 2130 90 196-199 (CH ₃ CN) 11 100 71 175-177 (ether) 9 130 54 234-239 (dec) 9 130 89 216-228 (dec) 1.5 100 71 231-238 (dec) 1.5 100 70 215-228 (dec) 1.5 100 70 215-228 (dec) 1.5 100 70 215-228 (dec) 3 140 75 216-219 (dec) 3 140 75 216-219 (dec) 1.5 100 69 215-223 (dec) 4.5 130 73 235.73 (dec) (ether)	ical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e] Reaction Yield Mp (°C) Molecular (%6) (Cryst. from) Formula (MW) (hours) (°C) (°C) 91 197-202 (dec) $C_{11}H_{13}N_5S$ 27 140 80 197-202 (dec) $C_{13}H_{16}N_6S$ 28 130 90 196-199 $C_{13}H_{16}N_6S$ 2130 90 196-199 $C_{13}H_{16}N_6S$ 214.30 11 10 reflux 72 230-236 (dec) 236.34 11 100 71 175-177 $C_{13}H_{26}N_6S$ 9 130 89 216-228 (dec) 286.34 0.25 180 54 234-239 (dec) 9 130 89 216-228 (dec) 286.34 1.5 100 70 215-228 (dec) 286.34 1.5 100 70 215-228 (dec) $C_{14}H_{18}N_6S$ 1.5 2140 75 216-219 (dec) $C_{13}H_{17}N_5S$ 1.5 100 70 215-222 (dec) $C_{14}H_{19}N_5S$ 1.5 100 70 215-222 (dec) $C_{14}H_{19}N_5S$ 1.5 100 69 225-237 (dec) $C_{14}H_{19}N_5S$ 45 130 73 73 273 5-776 $C_{14}H_{19}N_5S$	ical and Analytical Data of 1,3a,5,6,00c-Pentaazzoycloalka[e]acenaphth Reaction Yield Mp (°C) Molecular (°b) (Cryst. from) Formula (MW) C (hours) (°C) (°C) (2^{+}) (2^{+})	ical and Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]acemaphthylenes Reaction Yield Mp (°C) Molecular Analytical Temperature (°) (Cryst. from) Formula (MW) C H (hours) (°C) (°C) (Cryst. from) Formula (MW) C H (hours) (°C) 275,385 53.42 5.30 277 140 91 (CH ₃ CN) 247,32 53.38 5.44 66 reflux 67 153-157 $C_{13}H_{10}N_6$ 58.00 6.60 22 130 90 196-199 $C_{24}H_{6}N_6$ 58.00 6.60 22 130 90 196-199 $C_{24}H_{6}N_6$ 59.00 6.60 110 reflux 72 (CH ₃ CN) 284.37 63.32 7.21 110 reflux 72 (EHeer) 284.37 63.32 7.09 9 130 89 216-228 (dec) 286.34 58.59 6.44 0.25 180 85 4 234-239 (dec) 9 130 89 216-228 (dec) 286.34 58.59 6.44 1.5 100 70 216-228 (dec) 286.34 58.59 6.44 1.5 (CH ₃ CN) 284.37 63.32 7.05 8.5 140 77 216-228 (dec) 2.44 $B_{6}N_6$ 63.36 7.09 1.6 (CH ₃ CN) 286.34 58.59 6.47 1.5 100 70 215-228 (dec) 2.44 $B_{6}N_6$ 61.13 7.05 (CH ₃ CN) 289.41 58.16 6.57 8.5 140 77 216-228 (dec) 2.44 $B_{6}N_6$ 61.13 7.05 8.5 140 77 216-228 (dec) 2.44 $B_{6}N_6$ 61.13 7.05 8.5 140 77 216-228 (dec) 2.44 $B_{6}N_6$ 61.13 7.05 8.5 140 70 215-222 (dec) 2.44 $B_{6}N_6$ 61.13 7.05 8.16 (CH ₃ CN) 289.41 58.16 6.58 1.5 100 69 225-237 (dec) 2.04 $B_{6}N_6$ 61.13 7.05 8.14 10 6.12 (CH ₃ CN) 289.41 58.16 6.58 8.14 10 6.02 (CH ₃ CN) 289.41 58.16 6.58 8.14 10 6.02 (CH ₃ CN) 289.41 58.16 6.58 8.14 10 70 215-222 (dec) 2.04 $B_{6}N_6$ 6.17 7.37 8.14 10 6.10 70 215-223 (dec) 2.05 $B_{6}N_6$ 6.17 7.37 8.14 10 6.10 69 225-237 (dec) 2.14 $A_{6}N_6$ 6.217 7.37 8.15 (cH ₃ CN) 2.280.41 58.16 6.58 8.16 (cH ₃ CN) 2.280.41 58.17 7.48 6.57 7.48 6.57 7.58 6.57 7.58 6.57 7.58 6.57 7.58 6.57 7.58 6.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.55 7.57 7.58 7.55 7.55	tical and Analytical Data of 1,3a,5,6,00-Pentaazacycloalka[e]acenaphthylenes Reaction Yield Mp (°C) Analysis Time Temperature (°C) Mp (°C) Molecular Analysis 7 Temperature (°C) (°C) Mp (°C) Molecular Analysis 14 140 80 197-202 (dec) $C_{13}H_{13}N_5$ 55.70 6.22 25.43 2 130 77 (CH3CN) $C_{13}H_{13}N_5$ 56.70 6.23 23.40 2 130 77 (CH3CN) $C_{13}H_{23}N_6$ 63.36 7.09 29.55 2 130 77 (CH3CN) $C_{14}H_{3N}N_6$ 58.70 6.22 25.43 110 refturk 67 157-177 $C_{14}H_{3N}N_6$ 58.70 6.23 29.25 110 refturk 72 230-236 (dec) $C_{14}H_{3N}N_6$ 58.670 6.22 25.43 110 refturk 72 234-239 (dec) 236.34		ical and Analytical Data of L,3a,5,6,00c-Pentaazasycloalka[e]acemphitylenes Reaction Yield Mp (°C) Molecular Analysis MS (nours) (°C) (°C) (°C) Molecular (MW) C H N S 300 (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)
Analytical Dat aaction Temperature (°C) (°C) 140 140 130 130 130 130 100 100 100 100 100 10	Analytical Data of 1,3a eaction Yield (%) Temperature (%) (°C) (%) 140 80 140 91 reflux 67 130 90 100 71 180 54 130 89 100 71 140 75 140 75 140 75 140 75 140 75 130 70 1100 69	Analytical Data of 1,3a,5,6,00c-Pentaazz aaction Yield Mp ($^{\circ}$ C) Temperature (%6) (Cryst. from) (°C) 91 (P1, 32, 157) 130 90 197-202 (dec) 130 77 (ether) 130 71 (T5-177) 130 71 (F1, 5, 177) 100 71 (T5-177) 1100 71 (T5-177) 180 54 234-239 (dec) 130 75 216-219 (dec) 140 75 216-219 (dec) 100 70 215-222 (dec) 100 70 215-222 (dec) 100 69 225-237 (dec) 130 73 2233.5-726		Analytical Data of 1,3a,5,6,0c-Pentaazacycloalka[e]acenaphth aaction Yield Mp (°C) Molecular Temperature (%6) (Cryst. from) Formula C Temperature (%6) (Cryst. from) Formula C Temperature (%6) (Cryst. from) Formula C $(^{\circ}C)$ 80 197-202 (dec) $C_{11}H_{13}N_{5}S$ 55.70 130 90 196-199 $C_{12}H_{16}N_{6}S$ 58.91 130 77 (ether) 275.38 56.80 130 90 196-199 $C_{12}H_{16}N_{6}S$ 58.91 100 71 175-177 $C_{13}H_{15}N_{6}S$ 58.73 reflux 72 230-236 (dec) $C_{14}H_{18}N_{6}O$ 58.73 100 71 175-177 $C_{15}H_{16}N_{6}S$ 58.50 130 54 231.238 (dec) $C_{14}H_{18}N_{6}O$ 58.73 190 73 236.236 (dec) $C_{14}H_{19}N_{5}S$ 56.66 180 516-228 (dec) <td>Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]acenaphthylenes action Yield Mp (°C) Molecular Analytical Temperature (%6) (Cryst. from) Formula Calcd Temperature (%6) (Cryst. from) Formula Calcd Temperature (%6) (Cryst. from) Formula Calcd Temperature 00 197-202 (dsc) C₁₃H₁₅N₅S 53.342 5.30 130 77 (CH₃CN) 244.30 58.91 6.73 130 71 (CH₃CN) 244.30 58.91 6.73 130 71 175-177 C₁₃H₁₆N₆S 59.00 6.63 130 71 175-177 C₁₃H₁₆N₆S 58.91 6.73 130 71 275.38 56.60 6.34 44 130 71 244.30 58.73 6.34 44 130 71 231-238 (dsc) 6.34 44 709 130 89 244<</td> <td>Analytical Data of 1.3a,5,6,00-Pentaazacycloalkaf e Jacenaphthylenes action Yield Mp (°C) Molecular Analysis Temperature (%) (Cryst. from) Pormula Caled/Found (°C) 80 197-202 (dec) $C_{11}H_{13}N_{5}S$ 53.42 53.30 28.32 140 80 197-202 (dec) $C_{13}H_{17}N_{5}S$ 55.44 28.27 130 90 197-202 (dec) $C_{13}H_{10}N_{6}S$ 55.43 54.44 28.27 130 90 196-199 $C_{13}H_{10}N_{6}S$ 56.80 6.36 25.38 130 90 196-199 $C_{13}H_{10}N_{6}S$ 58.91 6.73 24.20 130 90 196-199 $C_{13}H_{10}N_{6}S$ 58.91 6.73 24.40 130 71 175-177 $C_{14}H_{10}N_{6}S$ 58.71 29.49 29.35 100 71 175-177 $C_{14}H_{10}N_{6}S$ 58.59 6.44 29.35 100 71 175-216 $C_{14}H_{18}$</td> <td></td> <td></td>	Analytical Data of 1,3a,5,6,00c-Pentaazacycloalka[e]acenaphthylenes action Yield Mp (°C) Molecular Analytical Temperature (%6) (Cryst. from) Formula Calcd Temperature (%6) (Cryst. from) Formula Calcd Temperature (%6) (Cryst. from) Formula Calcd Temperature 00 197-202 (dsc) C ₁₃ H ₁₅ N ₅ S 53.342 5.30 130 77 (CH ₃ CN) 244.30 58.91 6.73 130 71 (CH ₃ CN) 244.30 58.91 6.73 130 71 175-177 C ₁₃ H ₁₆ N ₆ S 59.00 6.63 130 71 175-177 C ₁₃ H ₁₆ N ₆ S 58.91 6.73 130 71 275.38 56.60 6.34 44 130 71 244.30 58.73 6.34 44 130 71 231-238 (dsc) 6.34 44 709 130 89 244<	Analytical Data of 1.3a,5,6,00-Pentaazacycloalkaf e Jacenaphthylenes action Yield Mp (°C) Molecular Analysis Temperature (%) (Cryst. from) Pormula Caled/Found (°C) 80 197-202 (dec) $C_{11}H_{13}N_{5}S$ 53.42 53.30 28.32 140 80 197-202 (dec) $C_{13}H_{17}N_{5}S$ 55.44 28.27 130 90 197-202 (dec) $C_{13}H_{10}N_{6}S$ 55.43 54.44 28.27 130 90 196-199 $C_{13}H_{10}N_{6}S$ 56.80 6.36 25.38 130 90 196-199 $C_{13}H_{10}N_{6}S$ 58.91 6.73 24.20 130 90 196-199 $C_{13}H_{10}N_{6}S$ 58.91 6.73 24.40 130 71 175-177 $C_{14}H_{10}N_{6}S$ 58.71 29.49 29.35 100 71 175-177 $C_{14}H_{10}N_{6}S$ 58.59 6.44 29.35 100 71 175-216 $C_{14}H_{18}$		
	a of 1,3a Yield (%) 91 91 97 77 71 71 71 71 72 72 72 72 73 73 73 73	a of 1,3a,5,6,00c-Pentaazz Yield Mp (°C) (%6) (Cryst. from) 80 197-202 (dec) 91 (CH ₃ CN) 67 153-157 77 (ether) 90 196-199 (CH ₃ CN) 71 175-177 (ether) 72 230-236 (dec) 73 234-239 (dec) 71 231-238 (dec) 71 231-238 (dec) 71 231-238 (dec) 71 231-238 (dec) 72 216-219 (dec) 73 215-222 (dec) 69 225-237 (dec) 69 225-237 (dec) 61 ether) 73 223:5-226	a of 1,3a,5,6,00c-Pentaazacycloalka[e] Yield Mp ($^{\circ}$ C) Molecular ($^{\circ}$ 6, (Cryst. from) Formula (MW) 80 197-202 (dec) C ₁₁ H ₁₃ N ₅ S 91 (CH ₃ CN) 247.32 67 153-157 C ₁₃ H ₁₇ N ₅ S 77 (ether) 244.30 71 175-177 C ₁₃ H ₁₆ N ₆ O 67 155-177 C ₁₃ H ₁₆ N ₆ O 71 175-177 C ₁₃ H ₁₆ N ₆ O 72 230-236 (dec) 286.34 54 234-239 (dec) 286.34 75 216-228 (dec) 286.34 76 213-238 (dec) 286.34 77 231-238 (dec) 286.34 78 234-239 (dec) 286.34 79 216-228 (dec) 286.34 70 215-222 (dec) C ₁₃ H ₁₇ N ₅ S 70 215-222 (dec) C ₁₃ H ₁₆ N ₅ O 71 231-238 (dec) 314.39 72 214-217 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 72 214-217 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₄ H ₁₆ N ₅ S 73 273 (dec) C ₁₇ H ₄₁₉ N ₅ S 73 273 5.776 C ₁₇ H ₄₁₉ N ₅ S 73 273 5.776 C ₁₇ H ₄₁₉ N ₅ S	a of 1.3a,5,6,00c-Pentaazacycloalka[e]acemaphth Yield Mp (°C) Molecular (MW) C (°b) (Cryst. from) Formula (MW) C 80 197-202 (dec) $C_{11}H_{13}N_5S$ 53.42 91 (CH ₃ CN) 247.32 53.38 67 153-157 $C_{13}H_{17}N_5S$ 56.70 77 (ether) 275.38 56.80 90 196-199 $C_{12}H_{16}N_6$ 59.00 (CH ₃ CN) 244.30 58.91 71 175-177 $C_{13}H_{20}N_6$ 63.36 73 (ether) 286.34 58.59 54 224-236 (dec) $C_{14}H_{18}N_6O$ 58.71 71 231-238 (dec) $C_{13}H_{18}N_6O$ 58.73 71 231-238 (dec) $C_{13}H_{18}N_6O$ 58.73 66 71 231-238 (dec) $C_{13}H_{18}N_6O$ 58.73 75 216-219 (dec) $C_{13}H_{18}N_6O$ 58.73 70 215-222 (dec) $C_{13}H_{18}N_6O$ 58.71 71 231-238 (dec) $C_{13}H_{18}N_6O$ 58.73 70 215-222 (dec) $C_{13}H_{18}N_6O$ 58.71 71 231-238 (dec) $C_{13}H_{18}N_6O$ 58.73 66(6) 733-75.38 56.66 72 236-237 (dec) $C_{13}H_{18}N_6O$ 61.13 72 214-217 (dec) $C_{14}H_{18}N_5S$ 58.10 6108 73 223.5-226 $C_{14}H_{18}N_5S$ 58.10 6108 73 233.5-226 $C_{14}H_{28}N_6O$ 62.17 6109 328.42 62.71	a of 1,3a,5,6,00c-Pentaazacycloalka[e]acemaphthylenes Yield Mp ($^{\circ}$ C) Molecular Ana ($^{\circ}$ 6) (Cryst. from) Formula Calcd (MW) C H ₃ CN) S 53.42 5.30 91 197-202 (dec) C ₁₁ H ₁₃ N ₅ S 55.70 6.22 77 (ether) 247.32 53.38 5.44 67 153-157 C ₁₃ H ₁₇ N ₅ S 56.70 6.22 196-199 C ₁₃ H ₁₆ N ₆ 59.00 6.60 196-199 C ₁₃ H ₁₆ N ₆ 53.00 6.60 171 (T55-177 C ₁₃ H ₁₆ N ₆ 53.00 6.60 175 214.30 58.73 6.34 71 175-177 C ₁₃ H ₁₆ N ₆ 53.36 7.09 66.7 (CH ₃ CN) 286.34 58.59 6.44 54 234-236 (dec) 286.34 58.59 6.44 54 234-236 (dec) 286.34 58.59 6.44 71 231-238 (dec) 286.34 58.59 6.44 72 216-219 (dec) C ₁₃ H ₁₆ N ₆ 0 58.73 6.36 70 215-222 (dec) C ₁₃ H ₁₇ N ₅ S 56.70 6.22 61.17 (CH ₃ CN) 275.38 56.66 6.17 70 215-222 (dec) C ₁₃ H ₁₃ N ₆ 0 61.13 7.05 61.14 (cHer) 289.41 58.16 6.58 61.14 (cHer) 288.41 58.16 6.58 61.14 (cHer) 288.41 58.16 6.58 71 231-238 (dec) C ₁₃ H ₁₇ N ₅ S 56.70 6.22 71 (CH ₃ CN) 275.38 56.66 6.17 70 215-222 (dec) C ₁₃ H ₁₃ N ₅ S 58.10 6.62 61.14 (cHer) 238.41 58.16 6.58 61.16 (cH ₅ CN) 238.41 58.16 6.58 61.16 (cH ₅ CN) 288.41 58.16 6.58 61.16 (cH ₅ CN) 288.41 58.16 6.58 61.16 (cH ₅ CN) 288.41 58.16 6.58 61.17 7.37 61.16 (cHer) 33.84.2 6.22 7.45 73 (cHer) 32.84.2 6.22 7.45 745 (cHer) 32.84.2 6.22 7.45 745 (cHer) 73 (cHer) 73 7.65 745 (cHer) 73 7.65 746 (cHer) 73 7.65 746 (cHer) 73 7.65 747 7.75 748 (cHer) 73 7.65 748 (cHer) 748 (cHer) 73 7.65 748 (cHer) 748 (cHer) 73 7.65 748 (cHer) 748 (cHer) 748 (cHer) 748 (cHer) 73 7.75 748	a of 1,3a,5,6,oo-Pentaazacycloalka[e]acenaphthylenes Yield Mp $^{\circ}$ C Molecular Calcd/Found (MW) C H Analysis (%) (Cryst. from) Formula C. Analysis (MW) C H A N (MW) C H A N (CH ₃ CN) 247.32 53.32 5.44 28.27 (CH ₃ CN) 247.30 58.91 6.73 34.40 (CH ₃ CN) 244.30 58.91 6.73 34.40 (CH ₃ CN) 244.30 58.91 6.71 29.49 (ether) 286.34 58.59 6.44 29.28 54 234-239 (dec) 286.34 58.59 6.44 29.28 54 234-239 (dec) 286.34 58.59 6.44 29.28 54 234-239 (dec) 236.38 56.66 6.17 25.38 71 175-117 C ₁₃ H ₃ N ₆ O 58.73 6.56 6.17 25.38 72 216-219 (dec) C ₁₃ H ₁₇ N ₅ S 56.70 6.22 25.43 73 216-219 (dec) C ₁₄ H ₉ N ₅ S 56.70 6.22 25.43 70 215-228 (dec) C ₁₃ H ₁₇ N ₅ S 56.70 6.22 25.43 70 215-228 (dec) C ₁₄ H ₉ N ₅ S 56.70 6.22 25.43 70 215-228 (dec) C ₁₄ H ₉ N ₅ S 56.70 6.22 25.53 70 216-219 (dec) C ₁₄ H ₉ N ₅ S 56.70 6.22 25.53 70 216-219 (dec) C ₁₄ H ₉ N ₅ S 56.70 6.22 25.53 70 216-219 (dec) C ₁₄ H ₉ N ₅ S 56.70 6.22 25.53 70 216-219 (dec) C ₁₄ H ₉ N ₅ S 56.70 6.22 25.53 712 214-217 (dec) C ₁₄ H ₉ N ₅ S 56.10 6.22 25.53 713 7.05 26.73 714 2017 7.37 25.59 715 205.74 2017 7.37 25.59 715 205.74 70 7.15 205.74 70 7.15 25.54 715 205.74 70 7.15 25.54 716 205.75 76.74 7.15 25.54 717 7.37 25.54	a of 1,3a,5,6,oc-Pentaazacycloalka[e]acenaphthylenes Yield Mp (°C) Molecular Analysis (%) (Cryst. from) Formula CalcdFound N (%) (Cryst. from) Formula CalcdFound N (%) (Cryst. from) Formula CalcdFound N S 80 197-202 (dec) $C_{11}H_{13}N_{5}S$ 55.33 5.44 28.27 12.92 67 153-157 $C_{13}H_{15}N_{5}S$ 56.70 6.22 25.43 11.64 71 (ether) 275.38 56.80 6.36 29.46 29.55 71 (f) (f) 53.22 7.21 29.49 29.55 71 (f) 284.37 63.32 7.09 29.55 11.64 71 215-177 Cl ₃ H ₁₆ N ₆ O 58.59 6.44 29.35 11.64 71 2175-177 Cl ₃ H ₁₆ N ₆ O 58.50 6.54 29.35 11.64 71 2175-177 Cl ₃ H ₁₆ N ₆ O	a of 1,3a,5,6,00-Pentaazacycloalka[e]acenaphthylenes Yield Mp (°C) Molecular Analysis MS (96) (Cryst. from) Formula Calcd/Found EI (96) (Cryst. from) Formula Analysis EI (96) (Cryst. from) Formula Calcd/Found S (7) $(197-202 (dec)$ 247.32 53.38 5.44 28.32 12.902 67 $157-167$ 247.32 53.38 5.44 28.27 247 77 (ether) 247.30 88.91 6.36 25.538 11.64 275 77 (ether) 244.30 88.91 6.70 6.22 25.43 11.64 71 $175-177$ 244.30 88.91 6.30 244 29.35 71 $175-177$ 244.30 85.36 6.34 29.35 244 711 $175-177$ 244.30 85.34 29.35 29.44

Table V

Ê 2 2 2 e č Ê ,

Sep-Oct 2003

[a] Type 1 by-product isolated, see Note [6].

			pmr (deut	eriochlorof	orm)						cmr (deuteriochlo	roform)			
Comp ound	CH ₂ -2 CH ₂ -3	CH2-7	other CH ₂	$CH_2-\omega$	ð	C-2 C-3	C-4	C-5a	C-6a	C-7	other C	C-®	C-0a	C-øb	ð
5/1	3.96 s (4H)	2.85 m	2.11 m (CH ₂ -8)	2.79 m (CH ₂ -9)	2.81 s (3H)	42.9 41.3	161.5	154.3	164.5	35.0	21.9 (C-8)	27.0 (C-9)	111.8 (C-9a)	142.6 (C-9h)	13.8
5/2	3.93 s	2.85 t	2.10 m	2.77 t	4.20 m (1H)	43.0	160.7	154.4	164.7	35.1	22.0 (C-8)	27.0	111.6	142.6	39.2 (CH)
5/3	(4H) 3.91 t	2.76 t	(CH ₂ -8) 2.06 m	(CH ₂ -9) 2.72 t	1.54 d (6H) 3.20 s	41.2 44.8	162.8	155.3	163.0	34.8	21.7 (C-8)	(C-9) 27.0	(C-9a) 111.4	(C-9b) 143.2	23.0 (CH ₃) 39.5
5/4	3.83 t 3.91 t	2.78 t	(CH_2-8) 2.06 m	(CH ₂ -9) 2.73 t	(6H) 3.55 m (4H)	43.7 45.0	163.5	155.6	163.4	35.0	22.0 (C-8)	(C-9) 27.2	(C-9a) 112.0	(C-9b) 143.5	48.8
5	3.71 t		(CH_2-8)	(CH ₂ -9)	1.70 m (6H)	44.5						(C-9)	(C-9a)	(C-9b)	25.3 23.8
5/5	3.91 t 3.76 t	2.78 t	2.07 qui (CH <u></u> 8)	2.73 t (CH ₂ -9)	3.62 m (4H) 3.82 m (4H)	44.7 44.1	162.8	155.1	163.2	34.9	21.8 (C-8)	27.1 (C-9)	112.3 (C-9a)	143.2 (C-9h)	47.7 (NCH ₂) 65.9 (OCH ₂)
5/6	3.92 m	2.80	1.83 qui (CH ₂ -9)	2.73 m	2.80 s	43.1	161.3	151.5	162.2	38.8	32.4 (C-9)	23.6	113.6	144.3	13.8
	(4H)	Ш	1.65 qui (CH ₂ -8) 1.57 aui (CH ₂ -10)	(CH ₂ - 11)	(3H)	40.8					26.8 (C-10) 25.8 (C-8)	(C-11)	(C-11a)	(C-11b)	
5/7	3.91 t	2.73	1.82 qui (CH ₂ -9)	2.69 m	3.63 m (4H)	44.7	162.8	152.5	161.0	38.5	32.5 (C-9)	23.6	114.2	144.9	47.7 (NCH ₂)
[a]	3.71 t	Е	1.63 qui (CH ₂ -8) 1.55 qui (CH ₂ -10)	(CH ₂ - 11)	3.81 m (4H)	43.5					26.9 (C-10) 25.7 (C-8)	(C-11)	(C-11a)	(C-11b)	65.8 (OCH ₂)
5/8	3.92 m	2.72	1.78 qui (2H)	2.72 m	2.80 s	43.1	161.4	152.0	158.8	34.5	29.7, 29.2,	23.7	111.6	143.6	13.8
	(4H)	E	1.66 qui (2H) 1.45 m (4H) (CH2- 8-11)	(CH ₂ - 12)	(3H)	40.9					26.6, 26.0 (C- 8-11)	(C-12)	(C-12a)	(C-12b)	
5/9	3.91 t	2.66	1.76 qui (2H)	2.66 m	3.62 m (4H)	44.8	162.9	153.1	157.6	34.2	29.6, 29.3,	23.8	112.1	144.3	47.7 (NCH ₂)
[a]	3.70 t	Е	1.64 qui (2H) 1.45 m (4H) (CH 8-11)	(CH ₂ - 12)	(NCH ₂) 3.82 m (4H) (OCH ₂)	43.7					26.6, 26.1 (C- 8-11)	(C-12)	(C-12a)	(C-12b)	65.9 (OCH2)
5/10	3.98 s (4H)	2.68 t	1.88 m (2H) 1.73 m (2H) 1.3-1.6 m (12 H) (CH-2 8-15)	2.64 t (CH ₂ - 16)	2.82 s (3H)	42.3 41.2	160.8	151.7	162.3	31.8	26.2 (two peaks), 26.0 (two peaks), 25.5, 24.1, 23.3, 23.1 (C- 8-15)	22.1 (C-16)	111.8 (C-16a)	144.4 (C-16b)	13.9
5/11	3.92 t 3.67 t	2.57 t	1.322×1.012 $1.70 \times (2H)$ $1.70 \times (2H)$ $1.3-1.6 \times (12 H)$ $(CH_2 - 8-15)$	2.54 t (CH ₂ - 16)	$\begin{array}{c} 3.61 \text{ m } (4\text{H}) \\ (\text{NCH}_2) \\ 3.81 \text{ m } (4\text{H})) \\ (\text{OCH}_2) \end{array}$	44.9 43.8	163.4	153.1	157.8	31.3	26.3, 26.05, 26.0, 25.9, 25.4, 24.1, 23.3, 23.1 (C- 8-15)	22.1 (C-16)	112.7 (C-16a)	145.1 (C-16b)	47.8 (NCH ₂) 65.9 (OCH ₂)

Nmr data of 1,3a,5,6, ∞ c-Pentaazacycloalka[e]acenaphthylenes Table VI

818

G. Berecz and J. Reiter

Vol. 40

[a] Assignment corroborated by 2D-nmr.

General Method for the Synthesis of 5-Chloro-2-Q-cycloalka[*d*][1,2,4]triazolo[1,5-*a*]pyrimidine Derivatives **2**.

Method A.

To a suspension of 0.03 mole of the corresponding cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidin-5(ω H)-one (1) and 23.0 g (0.15 mole, 14.0 ml) of phosphorus oxychloride 0.79 g (0.01 mole, 0.8 ml) of pyridine was added. The mixture was stirred at the temperature and for time given in Table I. The brown solution obtained was decomposed by pouring it into 200 g of crushed ice and stirred for 1 hour.

Method A1.

The crystals that precipitated were collected by filtration and washed free of acids with cold water and 5 % aqueous sodium hydrogen carbonate solution. The air-dried product was dry-column flash chromatographed on Kieselgel 60 H (eluents: different mixtures of *n*-hexane and chloroform of continuously increasing polarity) to yield after evaporation of the appropriate fractions *in vacuo* the corresponding 5-chloro-2-Q-cycloalka[*d*][1,2,4]triazolo[1,5-*a*]pyrimidine derivative **2**, that was recrystallised from an appropriate solvent (Table I, for the spectral data see Table II).

Method A2.

The oily product separated was taken in chloroform, the chloroform solution was washed with cold water and 5 % aqueous sodium hydrogen carbonate solution until the washings were neutral. After drying over anhydrous sodium sulphate and evaporating the solvent the residue was purified as in A1.

General Method for the Synthesis of 5-(2-Hydroxyethyl)amino-2-Q-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidine Derivatives **3**.

Method B.

To a suspension of 0.024 mole of the appropriate 5-chloro derivative (2) in a mixture of 25 ml of 2-propanol and 25 ml of chloroform 3.24 g (0.053 mole, 3.2 ml) of 2-aminoethanol was added and refluxed for time given in Table III. The reaction mixture was evaporated *in vacuo* to dryness, the crystalline residue was suspended in 50 ml of water, collected by filtration and washed with water and a small amount of acetonitrile to yield the corresponding 5-(2-hydroxyethyl)amino-2-Q-cycloalka[d]-[1,2,4]triazolo[1,5-a]pyrimidine derivative**3**, pure enough for further reactions. An analytical sample was recrystallised from an appropriate solvent (Table III, for the spectral data see Table IV).

General Method for the Synthesis of 5-(2-Chloroethyl)amino-2-Q-cycloalka[*d*][1,2,4]triazolo[1,5-*a*]pyrimidines (**4**).

Method C.

To a suspension of 0.02 mole of the corresponding 5-(2-hydroxyethyl)amino-2-Q-cycloalka[d][1,2,4]triazolo[1,5-a]-pyrimidine derivative **3** in 60 ml of dichloromethane 4.76 g (0.04 mole, 2.9 ml) of thionyl chloride was added with stirring. A slightly exothermic reaction took place and the yellow solution obtained began to crystallise in 30 minutes. The thick suspension was stirred overnight at room temperature (the time is given in Table III). The crystals (probably **4**.HCl) were collected by filtration and washed with dichloromethane. The product was suspended in 50 ml of chloroform and to the mixture 4.05 g (0.04 mole, 5.6 ml) of triethylamine was added. The solution obtained was washed with water (2 x 20 ml), dried over anhydrous sodium sulphate and evaporated *in vacuo* to dryness. The residue was

purified by dry-column flash chromatography on Kieselgel 60 H (eluents: dichloromethane and a 50:1 mixture of dichloromethane and methanol). The appropriate fractions were collected, evaporated *in vacuo* to dryness, the residue was triturated with ether and collected by filtration to yield 5-(2-chloroethyl)amino-2-Q-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidines (4) (Table III, for their spectral data see Table IV).

General Method for the Synthesis of $1,3a,5,6,\omega$ -Pentaazacycloalka[*e*]acenaphthylenes (5) by Ring Closure of the Corresponding 5-(2-Chloroethyl)amino-2-Q-cycloalka[*d*]-[1,2,4]triazolo[1,5-*a*]pyrimidines (4).

Method D1.

A suspension of 0.015 mole of the appropriate 5-(2chloroethyl)amino-2-Q-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidine (**4**) in 30 ml of acetonitrile was refluxed for the time given in Table V. The solution obtained was evaporated *in vacuo* to dryness, the residue was suspended in 50 ml of chloroform, 1.67 g (0.0165 mole, 2.3 ml) of triethylamine was added to it and the solution obtained was washed with 3 x 15 ml of water. The chloroform layer was dried over anhydrous sodium sulphate, evaporated to dryness and the residue was purified by dry-column flash chromatography on Aluminium oxide 60 G (eluents: different mixtures of *n*-hexane and chloroform of continuously increasing polarity). The appropriate fractions were collected, evaporated *in vacuo* to dryness and the residue collected by filtration from a suitable solvent (Table V, for the spectral data see Table VI).

Method D2.

5-(2-Chloroethyl)amino-6,7-dihydro-8*H*-2-(morpholin-4-yl)cyclopenta[d][1,2,4]triazolo[1,5-a]pyrimidine (**4**/**4**) (0.81 g, 0.0025 mole) was heated with stirring under argon atmosphere at 180 °C for 15 minutes. After cooling the product was dissolved in methanol, to the solution 0.135 g (0.0025 mole) of sodium methoxide was added, the mixture was evaporated *in vacuo* to dryness and the residue was subjected to dry-column flash chromatography (see Method D1).

General Method for the Synthesis of $1,3a,5,6,\omega$ c-Pentaazacycloalka[*e*]acenaphthylenes (**5**) by Ring Closure of the Corresponding 5-(2-Hydroxyethyl)amino-2-Q-cycloalka[*d*]-[1,2,4]triazolo[1,5-*a*]pyrimidine Derivatives **3** in Polyphosphoric Acid.

Method E.

To 0.015 mole of the corresponding 5-(2-hydroxyethyl)amino-2-Q-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidine (**3**) a six-fold amount (g/g) of polyphosphoric acid (Fluka) was added and the mixture "stirred" at an oil bath temperature and for time given in Table V. During the reaction the starting material was slowly dissolved and a honey-like mixture was obtained. This was cautiously dissolved in 3 x 50 ml of water keeping the inner temperature below 50 °C. The brown solution obtained [6] was neutralised with powdered sodium hydrogen carbonate added in small portions under vigorous stirring (heavy foaming). The pH of the solution was then adjusted with concentrated aqueous ammonia solution to 9-10.

Method E1.

The product that crystallised was immediately collected by filtration and washed with ice-cold water. After drying it was purified by dry-column flash chromatography on Aluminium oxide 60 G (eluent: dichloromethane). The appropriate fractions were collected, evaporated *in vacuo* to dryness, the residue was triturated with a suitable solvent and collected by filtration (Table V).

Method E2.

In case the product did not crystallise the solution was immediately extracted with chloroform, the combined chloroform layers were dried, evaporated *in vacuo* to dryness and purified as in E1.

Nucleophilic Displacement of the 4-Methylthio Group of $1,3a,5,6,\omega$ c-Pentaazacycloalka[*e*]acenaphthylenes (**5**, Q = methylthio) with Dialkylamines.

Method F.

A mixture of 0.005 mole of the corresponding 4-methylthio-1,3a,5,6, ω c-pentaazacycloalka[*e*]acenaphthylenes (**5**, **Q** = methylthio) and 0.05 mole of the corresponding dialkylamine was stirred at a temperature and for time given in Table V. After cooling 10 ml of ether was added to the solution, the crystals precipitated were collected by filtration and washed with ether. The crude product (**5**, **Q** = dialkylamino) was subjected to dry-column flash chromatography on Aluminium oxide 60 G (eluents: dichloromethane, followed by a 50:1 mixture of dichloromethane and methanol). The appropriate fractions were evaporated *in vacuo* to dryness, the residue was triturated with ether and collected by filtration (Table V, for their spectral data see Table VI).

Acknowledgement.

The authors wish to express their thanks to Mrs. Sándorné Sólyom and Mrs. Mónika Mezóvári for recording the ir spectra, to Mrs. Magdolna Nagy, Mr. Attila Fürjes and Dr. István Kövesdi for recording the nmr spectra, to Mr. Kálmán Újszászy, Mr. András Dobó, Dr. Éva Szabó and Dr. Péter Slégel for recording the ms spectra, to Miss Zsófia Kárpáti for recording the uv spectra, to Mrs. Magdolna Hirkóné-Csík for performing the elemental analyses and to Mrs. Erika Korenné-Ausländer, Mrs. Tünde Jenei and Miss Erika Kurunczi for technical assistance.

REFERENCES AND NOTES

[1] For Part XLVI see: G. Berecz, L. Párkányi, A. Kálmán and J. Reiter, *J. Heterocyclic Chem.*, **39**, 703 (2002).

[2] K. Esses-Reiter and J. Reiter, *J. Heterocyclic Chem.*, **24**, 1503 (1987).

[3] J. Reiter, G. Berecz and I. Pallagi, J. Heterocyclic Chem., 28, 721 (1991).

[4] J. Reiter Jr. and J. Reiter, *J. Heterocyclic Chem.*, **34**, 1519 (1997).

[5] G. Berecz, J. Reiter, K. Esses-Reiter, E. Rivó, L. Pongó and P. Trinka, Hung. Pat. 208 694 (EP 500 137), *Chem. Abstr.*, **118**, 254 9469 (1993).

[6] If the brown solution obtained crystallised the crystals were collected by filtration and chromatographed on a Kieselgel 60 H column (eluents: chloroform and 50:1 to 19:1 mixtures of chloroform and methanol) to yield the corresponding 2-Q-cycloalka[d][1,2,4]triazolo[1,5-a]pyrimidin-5(ω H)-one (1) by-product. Its amount does not exceed 5 %.

[7] L. M. Harwood, Aldrichimica Acta, 18, 25 (1985).